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Harmane, harmine and norharmane are β-carboline compoundswhich have been referred to as inverse agonists
of benzodiazepine receptors. The effect of these compounds on apomorphine-induced licking behavior was
studied in rats. Subcutaneous (s.c.) injection of apomorphine (0.5 mg/kg) induced licking. The licking behavior
was countedwith a hand counter and recorded for a period of 75 min by direct observation. Intraperitoneal (i.p.)
injections of harmane (1.25–5 mg/kg), harmine (2.5–10 mg/kg) and norharmane (1.25–5 mg/kg) significantly
reduced the licking behavior. In rats pretreated with reserpine (5 mg/kg, i.p., 18 h before the test), the effects of
harmane (4 mg/kg, i.p.), harmine (7.8 mg/kg, i.p.) and norharmane (2.5 mg/kg, i.p.) were unchanged. When
flumazenil (2 mg/kg, i.p.) was administered 20 min before apomorphine, it was able to antagonize the effects of
harmane, harmine and norharmane. It was concluded that the β-carbolines harmane, harmine and norharmane
reduce the licking behavior via an inverse agonistic mechanism located in the benzodiazepine receptors.
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1. Introduction

Harmane, harmine and norharmane are β-carboline compounds that
have been found in a number of medicinal plants, tobacco smoke, well-
cooked foods (Poindexter and Carpenter, 1962; Nishigata et al., 1980;
Herraiz, 2000) and in mammalian tissues (Airaksinen and Kari, 1981;
Guan et al., 2001; Anderson et al., 2006). β-carboline compounds act as
inverse agonists at the benzodiazepine site of the γ-aminobutyric acid
type A (GABAA) receptors and have actions diametrically opposite to
those of the anxiolytic benzodiazepines (Rommelspacher et al., 1981;
PradodeCarvalho et al., 1983;Allen et al., 1992; Chapouthier andVenault,
2003). These compounds are also associated with the potentiation of
monoaminergic pathways through monoamine oxidase (MAO) A or B
inhibition (Kim et al., 1997; Rommelspacher et al., 2002; Herraiz and
Chaparro, 2005;Herraiz et al., 2010), blockadeof reuptake sites anddirect
activation of monoamine receptors (Komulainen et al., 1980; Sällström-
Baumet al., 1995, 1996; Tella, 1995;Glennon et al., 2000). Neurochemical
and behavioral studies have shown that some β-carbolines facilitate the
dopaminergic transmission (Pimpinella and Palmery, 1995) and interact
with D1 and D2 dopaminergic receptors (Müller et al., 1981; Pawlik and
Rommelspacher, 1988; Nasehi et al., 2010) in the striatum, a structure
known to be involved in stereotyped licking behavior (Costall et al., 1972;
Ungerstedt, 1979; Zarrindast et al., 1992). The stereotyped licking
behavior is thought to be produced by activation of both postsynaptic
dopamineD1 andD2 receptors (Ungerstedt, 1979; Zarrindast et al., 1992).
In this respect, a GABAA mechanism in the striatum has also been
identified. Stereotypy produced by peripheral or central injection of
direct- or indirect-acting dopaminergic agents is blocked by intrastriatal
injection of GABAA antagonists. Moreover, intrastriatal GABAA agonists
induce stereotyped behavior which is indistinguishable from that
produced by apomorphine or amphetamine (Childs and Gale, 1983;
Karler et al., 1995). These data suggest that a GABAergic process in the
striatum is involved in the neuroeffector mechanisms mediating the
stereotypy evoked by dopaminergic agents. It is reasonable, therefore, to
propose that β-carboline inverse agonists at the benzodiazepine/GABAA

receptor complex may modulate this striatal mechanism. The present
studywas carried out to examine the effects of theβ-carbolines harmane,
harmine andnorharmane on the stereotyped licking behavior induced by
the mixed dopamine D1/D2 receptor agonist, apomorphine in rats.

2. Materials and methods

2.1. Animals

All experimentswere carriedout onmaleWistar albino rats fromthe
Pasteur Institute (Iran), 200–250 g in body weight. The animals were
housed5perplastic cage in ananimal roommaintained at 21±2 °Con a
12-h light/dark cycle (lights on at 0700–1900 h). Standard laboratory
rat chow (Pars, Iran) andwaterwere available at all times except during
the experiments. Each animal was used once only.

http://dx.doi.org/10.1016/j.pbb.2011.01.001
mailto:davoodfarzin@yahoo.com
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Fig. 2. Effects of harmane, norharmane and harmine on the licking behavior in reserpine-
pretreated rats. Harmane (4 mg/kg, i.p.), norharmane (2.5 mg/kg, i.p.) and harmine
(7.8 mg/kg, i.p.)were injected in animals pretreatedwith saline (1 ml/kg, i.p.) or reserpine
(5 mg/kg, i.p., 18 h before the test), 20 min before apomorphine (0.5 mg/kg, s.c.). Results
are expressed as means±S.E.M. (n=7–10 rats/group). ⁎Pb0.05, ⁎⁎Pb0.01, and
⁎⁎⁎Pb0.001, different from the control group.
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2.2. Licking measurement

For the apomorphine-induced licking test, animals were observed in
a clear, cylindrical chamber (25 cm wide and 25 cm high) for a 75-min
period according to previous reports (Zarrindast et al., 1992; Farzin and
Attarzadeh, 2000). A mirror was arranged in an oblique position under
the cylinder tomake recordingof lickingpossible. Animalswereallowed
30 min to accommodate prior testing. Immediately after apomorphine
injection (0.5 mg/kg, s.c.), the animals were placed singly into the
cylinder and the number of licks (protrusion of the tongue against
the cylinder wall or floor) were recorded by a direct observer during a
75-min period. The observer was blind to treatment. The experimental
protocol was approved by the Research and Ethics Committee of
Mazandaran University of Medical Sciences.

2.3. Drugs

The following drugs were used: R(-)-apomorphine HCl (Research
Biochemicals, USA),flumazenil (Sigma, USA), harmaneHCl (Sigma, USA),
harmine HCl (Sigma, USA), norharmane HCl (Sigma, USA) and reserpine
(Sigma,USA). Thedrugsweredissolved in saline, except for reserpineand
flumazenil, whichwere dissolved in a drop of acetic acid and thendiluted
with saline. In these cases, the vehicle control was acetic acid in saline.
Reserpine (5 mg/kg, i.p.) was injected to animals around 18 h before test
to deplete of the striatal dopamine content (Zarrindast and Minaian,
1991; LaBuda and Fuchs, 2002). It iswell known that reserpine (5 mg/kg,
17 to 19 h before testing) produce a marked reduction in the dopamine
concentration of the rat striatum (Guldberg and Broch, 1971). Drug
concentrations were prepared so that the necessary dose could be
injected in a volume of 1 ml/kg by i.p. or s.c. route. The doses of drugs and
pretreatment time were usually those used previously and shown to be
pharmacologically active (Pimpinella and Palmery, 1995; Sällström-
Baum et al., 1996; Farzin and Attarzadeh, 2000; Nasehi et al., 2010).

2.4. Statistical analysis

One-way analysis of variance (ANOVA) followed by the Newman–
Keuls multiple comparisons test was used for statistical analysis.
Differences with Pb0.05 between the experimental groups at each
point were considered statistically significant. All data were analyzed
with the computer program, GraphPad Prism Software (V5).

3. Results

3.1. Effects of harmane, norharmane and harmine on apomorphine-
induced liking behavior

Subcutaneous injection of apomorphine (0.5 mg/kg) to rats
induced licking. The licking response was reduced in animals
pretreated with harmane (1.25–5 mg/kg, i.p.) [F (3, 27)=4.87,
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Fig. 1. Effects of harmane, norharmane and harmine on apomorphine-induced licking beha
Results are expressed as means±S.E.M. (n=7–10 rats/group). ⁎Pb0.05 and ⁎⁎Pb0.001, di
Pb0.0078, n=7–10 rats/group, and ED50=4 mg/kg], norharmane
(1.25–5 mg/kg, i.p.) [F (3, 29)=20.22, Pb0.0001, n=7–10 rats/group,
and ED50=2.5 mg/kg] and harmine (2.5–10 mg/kg, i.p.) [F (3, 29)=
4.068, Pb0.0158, n=7–10 rats/group, and ED50=7.8 mg/kg], 20 min
before apomorphine (the ED50 value obtained by regression analysis)
(Fig. 1).

3.2. Effects of harmane, norharmane and harmine on the liking behavior
in reserpine pretreated rats

In rats pretreatedwith reserpine (5 mg/kg, i.p., 18 h before the test),
the inhibitory effects of harmane (4 mg/kg, i.p) [F (3, 25)=13.799,
Pb0.0001, and n=7–8 rats/group], norharmane (2.5 mg/kg, i.p.)
[F (3, 25)=9.569, Pb0.0002, and n=7–8 rats/group] and harmine
(7.8 mg/kg, i.p.) [F (3, 25)=14.002, Pb0.0001, and n=7–8 rats/group]
were unchanged (Fig. 2).

3.3. Effects of harmane, norharmane and harmine on the liking behavior
in flumazenil treated rats

In rats treated with different doses of flumazenil i.p., 20 min before
apomorphine (0.5 mg/kg, s.c.), a low dose of 2 mg/kg flumazenil was
ineffective in reducing the licking behavior, while higher doses of the
drug (4 and 8 mg/kg) were effective [F(3, 25)=6.344, pb0.0024, and
n=7–8 rats/group] (Fig. 3). The dose of 2 mg/kg flumazenil i.p., which
was ineffective in modifying the licking response, significantly
antagonized the inhibitory effects of harmane (4 mg/kg) [F (3, 25)=
5.618, Pb0.0044, and n=7–8 rats/group], norharmane (2.5 mg/kg)
[F (3, 25)=6.240, pb0.0026, and n=7–8 rats/group] and harmine
(7.8 mg/kg) [F (3, 25)=7.342, Pb0.0011, and n=7–8 rats/group]
(Fig. 4).
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vior in rats. All agents were injected i.p. 20 min before apomorphine (0.5 mg/kg, s.c.).
fferent from the control group.
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Fig. 3. Effect of flumazenil on apomorphine-induced licking behavior in rats. Flumazenil
was injected i.p. 20 min before apomorphine (0.5 mg/kg, s.c.). Results are expressed as
means±S.E.M. (n=7–8 rats/group). ⁎Pb0.01, different from the control group.

217D. Farzin et al. / Pharmacology, Biochemistry and Behavior 98 (2011) 215–219
4. Discussion

In the present study, the effects of harmane, harmine andnorharmane
on apomorphine-induced licking behavior in rat were examined. The
main findings are as follows.

(a) Harmane, harmine and norharmane were remarkably effective
in reducing apomorphine-induced licking behavior.

(b) The inhibitory effects of these compounds were prevented in
rats treated by flumazenil but not by reserpine.

These findings have been in part confirmed in several studies,
showing that apomorphine-induced licking behavior can be suppressed
by harmane and related β-carbolines (Kari et al., 1980; Müller et al.,
1981). The attenuating effects of harmane, harmine and norharmane on
the licking behavior may be explained by several mechanisms.

Onepossiblemechanismmaybe an interactionwithbenzodiazepine
receptors in an inversemanner. Harmane, harmine and norharmane are
present in the brain (Airaksinen and Kari, 1981; Beck and Faull, 1986;
Moncrieff, 1989). The origin of these β-carbolines in the brain may be
exogenous, e.g. after consuming various foodstuffs or smoking tobacco
(Poindexter and Carpenter, 1962; Nishigata et al., 1980; Herraiz, 2000;
Rommelspacher et al., 2002) and/or endogenous, i.e. after reaction
of tryptamine with acetaldehyde or with pyruvic acid (Schouten
and Bruinvels, 1986; Moncrieff, 1989; Rommelspacher et al., 1991).
These β-carbolines bind to benzodiazepine site of the GABAA receptors
as inverse agonists (Rommelspacher et al., 1981; Prado de Carvalho
et al., 1983; Allen et al., 1992; Chapouthier and Venault, 2003). Both
electrophysiological and behavioral effects of β-carbolines as well as
benzodiazepines are antagonized by flumazenil (Hoffman andWarren,
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Fig. 4. The effects of harmane, norharmane and harmine alone or in combination with
flumazenil. Harmane(4 mg/kg, i.p.), norharmane (2.5 mg/kg, i.p.), harmine (7.8 mg/kg, i.p.),
flumazenil (2 mg/kg, i.p.) and saline (1 ml/kg, i.p.) were injected to rats 20 min before
apomorphine (0.5 mg/kg, s.c.). Results are expressed as means±S.E.M. (n=7–8 rats/
group). ⁎Pb0.05 and ⁎⁎P b0.01, different from the control group.
1993). In the present study,flumazenil at a dose ineffective per se (2 mg/
kg, i.p.) on the licking response, antagonized the effects of the β-
carbolines. Our findings provide evidence for an inverse agonistic
mechanism located in the benzodiazepine receptors. According to the
present findings, the rank order of potency of the β-carbolines in
reducing the licking behavior was norharmaneNharmaneNharmine. In
agreementwith our data, it has been shown that norharmane, themost
potent compound, displaced [3H]flunitrazepam from the benzodiaze-
pine binding site with an IC50 6 μM, whereas harmane and harmine
were less potent than norharmane with IC50s 25 μM and 200 μM,
respectively (Robertson et al., 1981). These results add further data to
support an involvement of benzodiazepine site in reducing the licking
behavior. For flumazenil, it is interesting to note that both doses of 4 and
8 mg/kg were effective in reducing apomorphine-induced licking
behavior. It is very well known that flumazenil acts predominantly as
a specific antagonist at benzodiazepine receptors (Bonetti et al., 1982;
File and Cooper, 1985), although it may act as an inverse agonist after
relatively high doses (File and Pellow, 1985). Since the β-carboline
inverse agonists used in the present experiment reduced the licking
response, it may be that the higher doses of flumazenil suppress the
licking behavior by such a mechanism. However, further work is
necessary to investigate the dose–response relationships between the
dose of flumazenil and its effects on apomorphine-induced licking
behavior.

Another possibility for the inhibitory effects of theβ-carbolines on the
licking behaviormay be an interactionwith dopaminergic system. At this
point it should be noted that harmane and other β-carbolines interact
with monoaminergic pathways through inhibition of monoamine
oxidase A or B (Kim et al., 1997; Rommelspacher et al., 2002; Herraiz
and Chaparro, 2005; Herraiz et al., 2010) and monoamine reuptake
systems (Komulainen et al., 1980; Sällström-Baum et al., 1995, 1996;
Tella, 1995;Glennon et al., 2000).Most of the investigations conducted to
ascertain the dopaminergic actions of β-carbolines have reported that
these compounds have antidopaminergic activity (Westermann et al.,
1976; Kari et al., 1980; Müller et al., 1981; Matsubara et al., 1998). In
this respect, Tam and Roth (1985) have also reported a decrease in
dopaminemetabolism in the rat striatumafter ananxiogenicβ-carboline,
N-methyl-β-carboline-3-carboxamide (FG 7142) treatment, suggesting
an inhibition of the nigrostriatal dopamine system by this β-carboline.
This suggestion is further supported by the observation that β-carbolines
increase thefiring rate of zona reticulata (ZR) cells in the substantia nigra
(Mereu et al., 1983). An activation of the ZR cells could result in an
inhibition of dopamine cells in the zona compacta that project to the
striatum, and thus reduce dopamine transmission in the striatum (Grace
and Bunney, 1979). There are several studies indicating that the
activating effect of harmane and other β-carbolines on dopamine efflux
is dose-dependent, U shaped, with low doses (μg range, i.p. injections) of
compounds activating dopamine efflux and high doses (mg range, i.p.
injections) inhibiting it (Ergene and Schoener, 1993; Sällström-Baum
et al., 1995, 1996). The doses used in the present experiments is in the
highdose category, thereforewecan reasonably speculate that the effects
of the β-carboline compounds used in the present experiments are likely
unrelated to an activating effect on dopamine efflux. Our findings are in
agreement with this hypothesis, because the pretreatment of animals
with reserpine did not modify the effects of harmane, norharmane and
harmine. The effect can be explained by an inhibition of postsynaptic
dopaminergic transmission which is modulated by an action on the
benzodiazepine/GABAA receptor complex, because flumazenil abolished
theβ-carboline-induceddecrease in the lickingbehavior. It is noteworthy
that the benzodiazepinergic system interacts functionally with the
dopamine transmission in various brain regions. For example, a basal
dopaminergic tonus, by stimulating both dopamine D1 and D2 receptors,
induces an anxious-like state that is suppressed by the benzodiazepine
anxiolytic diazepam(Geller, 1964). Previous studieshavealso shownthat
dopamine receptor stimulation in the striatum activates the descending
striato-entopeduncular, striato-nigral and pallido-subthalamic GABA



218 D. Farzin et al. / Pharmacology, Biochemistry and Behavior 98 (2011) 215–219
pathways and consequently induces a GABA mediated inhibition of
efferent neurons localized in these nuclei (Scheel-Kriiger et al., 1980;
Westerling et al., 1989). Local injection of GABA agonists into these nuclei
caused a behavioral syndrome very similar to what was observed after
peripheral injections of apomorphine or amphetamine (Scheel-Kriiger
et al., 1980). Thus, benzodiazepine/GABA mechanisms might influence
dopaminemediated behavior. However, at this moment it is still unclear
whether dopamine- or benzodiazepine/GABAergic component contri-
butes most to the observed decrease of the licking behavior. Further
experiments shouldbeundertaken to elucidate theputative participation
of these systems on the licking behavior.

It has also been reported that an interacting antagonism between
dopaminergic and serotoninergic systems exist in the brain, with
serotoninergic projections inhibiting dopaminergic function at several
levels (Kapur and Remington, 1996; Sällström-Baum et al., 1996). Since
β-carbolines facilitate serotoninergic transmission (Sällström-Baum
et al., 1996) and pretreatment with 5-hydroxy-tryptophan antagonizes
dopaminergic stereotyped behaviors (Weiner et al., 1973), it therefore
seems likely that the β-carbolines harmane, harmine and norharmane
reduce the licking behavior by such a mechanism. However, the effects
on the licking behavior of the β-carbolines tested in reserpine-treated
rats do not support the idea of an involving serotoninergic mechanism.

In conclusion, the present study demonstrates that the β-carbolines
harmane, harmine and norharmane inhibit apomorphine-induced
licking behavior in rat. This effect seems to be not mediated by presyn-
aptic monoaminergic mechanisms, but appears to be induced by an
inverse-agonistic mechanism located in the benzodiazepine receptors.
Further experiments areneeded todetermine theprecisemechanismsby
which the β-carbolines harmane, harmine and norharmane alter the
licking behavior.
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